
Submitted to Haskell Symposium 2016

Haskell Relational Record
A Pragmatic Embedded System for Type-Safe and Composable SQL Queries

Kei Hibino Shohei Murayama
Asahi Net, Inc.

k.hibino@asahinet.com
shohei.murayama@asahinet.com

Kazuhiko Yamamoto
IIJ Innovation Institute Inc.

kazu@iij.ad.jp

Abstract
Hand-written SQL statement strings are error-prone because SQL
syntax is not checked in host programming languages. One solution
to this problem is to use an embedded domain-specific language
(EDSL) in a strongly-typed programming language, which gen-
erates syntactically-correct SQL statements when the code passes
type checking. HaskellDB, recognized as the first implementa-
tion of such an EDSL, enables building large queries from small,
well-tested queries. Unfortunately, HaskellDB is insufficient for
real-world business because it does not support some necessary op-
erations, such as outer joins. Moreover, aggregated queries do not
keep the structure of the corresponding tables and nested Haskell
record types are not allowed as query result types. To solve these
problems, we implemented Haskell Relational Record (HRR), a
pragmatic EDSL in Haskell that supports a large part of the SQL
standard, including outer joins and correlated subqueries. HRR
provides query composability yet handles both non-aggregate and
aggregate queries correctly. HRR query results can be of any
Haskell record type. SQL expressions in queries are typed with
nested Haskell records. We show algorithms for primitive oper-
ators of record manipulation which preserve correspondence be-
tween nested Haskell records and flat SQL structures. HRR’s ar-
row interface provides type-safety—generated SQL statements do
not contain syntax errors, type errors, or reference errors. This also
holds when using the monad interface, aside from cases where cor-
related subqueries are joined. More than three years of production
use demonstrates stability and usability of HRR.

Categories and Subject Descriptors H.2.3 [DATABASE MAN-
AGEMENT]: Languages—Embedded System

Keywords SQL, Relational Database, Type-Safety, Composable
Query, Outer Join, Aggregation, Nested Record.

1. Introduction
SQL (ISO 2011) is the standard query language for relational
database systems. Programs often use SQL statements to manip-
ulate data in database systems, but hand-written SQL statement
strings are error-prone because SQL syntax is not checked in host
programming languages. It is difficult to write complicated SQL

[Copyright notice will appear here once ’preprint’ option is removed.]

statement strings correctly, and they are not reusable. One approach
to making SQL statements reusable is the integration of query func-
tionality into programming languages. LINQ (Meijer et al. 2006) is
a prominent example, and a more seamless integration is found in
SML# (Ohori and Ueno 2011).

Another notable approach, which does not require modification
of programming languages, is the use of an embedded domain-
specific language (EDSL). HaskellDB (Leijen and Meijer 1999;
Bringert and Höckersten 2004) is such an EDSL in Haskell (Mar-
low et al. 2010), with excellent features. Since HaskellDB queries
are composable, large queries can be built from well-tested, small
queries. HaskellDB queries that compile generate syntactically-
correct SQL statements.

In 2012, Asahi Net, Inc. attempted to use HaskellDB for its
business. Asahi Net is a Japanese Internet service provider with
about 587,000 residential customers, as of March 2016. Its business
model is to minimize labor expenses by automating operations,
while keeping a small share of the market. For this purpose, Asahi
Net has maintained hand-written SQL statements in Java, Perl,
and other programming languages. In the Java and Haskell code,
2,622 unique SQL statements are used, of which 1,770 are SELECT
statements. Note that the count does not include queries in untyped
languages, where it is difficult to make an accurate count.

Unfortunately, use of HaskellDB in practical database oper-
ations discloses its drawbacks. It is insufficient for real-world
business because it does not support some necessary operations,
such as outer joins and correlative subqueries. Note that 5.0% and
1.8% of the SELECT statements are outer joins and correlative sub-
queries, respectively, at Asahi Net. Moreover, if aggregate queries
are reused, they do not keep the structure of the corresponding ta-
bles, as described in Section 6.1. Query result types are limited to
flat, heterogeneous lists, which cannot correspond to nested Haskell
records.

We developed a pragmatic EDSL for SQL, called Haskell
Relational Record (HRR), from scratch, to help programmers
write complicated, real-world SQL statements correctly. Like
HaskellDB, HRR provides composability to enable reuse of code
fragments at various levels. For example, queries in HRR can be
composed using joins, as well as combined using set operations
such as union, intersection, and difference. To resolve HaskellDB
issues, we designed HRR to support a large part of the SQL stan-
dard, including outer joins and correlated subqueries.

HRR provides separate query monads for non-aggregate and ag-
gregate queries. This ensures that aggregate query table structures
are maintained even if the queries are reused. Query results can
be of any Haskell record type, and query expressions are typed
with Haskell records so that they can be reused. To support this,
we developed primitive operators which preserve correspondence
between nested Haskell record types and flat SQL structures.

Haskell Relational Record 1 2016/8/2

If HRR code passes type checking by a Haskell compiler, run-
ning the corresponding executable generates syntactically-correct
SQL statements. The algorithm to generate SQL statements is
straightforward—no optimization is carried out. For instance, a
nested query is translated into a nested SQL query. When the HRR
arrow (Hughes 1998) interface is used, generated SQL statements
are valid, where “valid” means that they do not have type errors or
reference errors, but they may include errors relating to null. When
using the monad interface, this does not hold in cases where cor-
related subqueries are joined—generated SQL statements contain
reference errors. In practice, this is not a serious problem because
database systems can always detect the errors.

When HRR queries are compiled by a Haskell compiler, the
schema of target tables are obtained and necessary definitions for
the queries are automatically generated. The compiler checks that
the queries are consistent with the generated definitions. In our
experience, this schema capture mechanism breaks down psycho-
logical barriers that make schema changes daunting. Currently,
HRR supports DB2, PostgreSQL, SQLite, MySQL, Microsoft SQL
Server, and OracleSQL. To support such a wide variety of database
systems, HRR generates standard SQL statements only, avoiding
use of database-system-specific features. We hope that this eases
database system migration.

HRR has been in use at Asahi Net since March 2013, and more
than three years of production use demonstrates its stability and
usability. We have also released HRR as open-source software.1

This paper describes HRR, primarily focusing on its type-safety
and composability which help programmers to write complicated
SQL statements correctly. The contributions of this paper are as
follows:

• We provide a pragmatic EDSL for SQL which provides com-
posability. HRR is type-safe when the arrow interface is used,
where “type-safe” means that generated SQL statements are
syntactically-correct and valid (i.e. with no type or reference
errors, but possibly with null errors). This also holds when us-
ing the monad interface, except in cases where correlated sub-
queries are joined.
• We show that type separation of non-aggregate and aggregate

queries brings type-safety, and converting these types into a
single query type enables query composability.
• We show that SQL expressions in queries are typed with nested

Haskell records and provide algorithms for primitive opera-
tors of record manipulation which preserve correspondence be-
tween nested Haskell records and flat SQL structures.

This paper is organized as follows. Section 2 describes HRR by
example, and composability is discussed in Section 3. Section 4 ex-
plains how HRR code is translated into SQL statements. Section 5
discuss SQL expressions with Haskell record types. Related work
is covered in Section 6, and our conclusion is in Section 7.

2. Basic Concepts by Example
This section explains the basic concepts of HRR by example.2 This
paper focuses on SELECT statements (i.e. SQL queries), which we
have found are the most challenging. Throughout this paper, the
monad interface of HRR is used for simplicity.

2.1 A Simple Query
We use the following table of employees throughout this paper:

1 http://khibino.github.io/haskell-relational-record/
2 To simplify explanation, this paper uses wrapper modules and definitions
exported from the relational-record-examples package, available in
Hackage.

CREATE TABLE Employee (
id INTEGER NOT NULL

, name VARCHAR(32) NOT NULL
, dept_id INTEGER NOT NULL);

To use this table from Haskell, it is necessary to map Haskell
records to those in a database system. Haskell records represent-
ing tables can be defined manually, but hand-written definitions
are error-prone and cannot capture table schema changes. HRR
can auto-generate them using Template Haskell (Sheard and Pey-
ton Jones 2002): when HRR code is compiled, table schemas are
obtained from a database system and Haskell records are defined
automatically. To ease the introduction of HRR into products, map-
pings can be customized.

If we use SQLite, and file company.db contains all of the tables
used in this paper, we should prepare the following Employee.hs
for the Employee table:

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
module Employee where
import Database.Record.TH.SQLite3

$(defineTable "company.db" "employee")

The following data type is automatically defined at compile time:

data Employee = Employee {
id :: !Int

, name :: !String
, deptId :: !Int
} deriving (Show)

2.1.1 SELECT Statement Relations
To work with auto-generated Haskell records, we need additional
components to represent SELECT statements. In HRR, such com-
ponents are called relations. For the example above, the following
relation, which selects employees from the Employee table, is also
automatically created:

employee :: Relation () Employee

Relation is a type for relations, with two phantom parame-
ters(Leijen and Meijer 1999). The first is the placeholder type (see
Appendix A). The second indicates the result type. Here, employee
represents a SELECT statement, with no placeholder parameters,
that returns Employee values. We can print the SELECT statement
generated by the employee relation:

GHCi> print employee
SELECT id, name, dept_id FROM employee

A Relation value can be converted to an SQL string and sent to a
database system using the following function:

runRelation :: (IConnection conn
,ToSql SqlValue p
,FromSql SqlValue a) =>
conn -> Relation p a -> p -> IO [a]

Currently, HRR uses HDBC3 as a database abstraction layer.
IConnection is a typeclass, defined in HDBC, that represents
connections to database systems. SqlValue is a type of SQL value
in HDBC. The third parameter, p, holds any placeholder values.

The following example demonstrates running employee with
SQLite:

3 http://hackage.haskell.org/package/HDBC

Haskell Relational Record 2 2016/8/2

GHCi> :load Employee
GHCi> import Database.Relational.Query.SQLite3
GHCi> conn <- connectSqlite3 "company.db"
GHCi> runRelation conn employee ()
[Employee {id = 1, name = "Smith", deptId = 100}
,Employee {id = 20, name = "Parker", deptId = 101}]

2.2 A Query with Filtering
Relations can be built using other relations. For instance, the fol-
lowing is a relation that selects employees from the Employee table
whose identifier is less than n:

import qualified Employee as E
import Database.Relational.Query

earlyEmp :: Int -> Relation () E.Employee
earlyEmp n = relation $ do

e <- query E.employee
wheres $ e ! E.id’ .<. value n
return e

Each component in this example is described later, and Appendix B
shows the auto generated code for Employee.hs. Note that n is just
a parameter of the Haskell function, not a placeholder parameter.
Let’s choose 10 for n. In this case, earlyEmp is converted to the
following SQL statement:

GHCi> print $ earlyEmp 10
SELECT ALL T0.id AS f0, T0.name AS f1, T0.dept_id AS f2

FROM employee T0
WHERE (T0.id < 10)

Running (earlyEmp 10) results in:

GHCi> runRelation conn (earlyEmp 10) ()
[Employee {id = 1, name = "Smith", deptId = 100}]

Later, we will look at this filtering example in more detail and
use it to highlight some important concepts of HRR.

2.2.1 Query Monads
SELECT statements are roughly categorized into non-aggregate
and aggregate queries. HRR provides two separate monads, called
query monads, to build them. This type separation is one of the keys
to type-safety. In this paper, we use two kinds of query monads:

• QuerySimple — a query monad for non-aggregate queries,
which stores information on joining, table/column naming, fil-
tering, ordering, etc.
• QueryAggregate — a query monad for aggregate queries,

which, in addition to the information stored by QuerySimple,
stores information on GROUP BY and HAVING, as well as order-
ing restrictions

As seen in earlyEmp, relations can be reused with the following
pattern:

relation $ do
e <- query <RELATION>
...
return e

The query function converts a relation to an action in the query
monad, which is specialized to QuerySimple in the above exam-
ple:

query :: MonadQuery m =>
Relation () r -> m (Projection Flat r)

QuerySimple and QueryAggregate are instances of MonadQuery.
The relation function restricts the type of the query monad to
QuerySimple:

relation :: QuerySimple (Projection Flat r)
-> Relation () r

Using this pattern, a relation is converted to a query monad and
then converted back to a Relation for composability, as explained
in Section 3.

2.2.2 Projections for SQL Expressions
SQL statements consist of SQL expressions. In HRR, SQL expres-
sion components are called projections. Note that the term “projec-
tion” in this paper is different from SQL terminology, where it is
used to indicate how to extract columns. The concept of projection
is precisely explained in Section 5.

Projection is a data type for projections, with two phantom
parameters. The first indicates the context of SQL expressions,
taking one of the following values:

• Flat — the base context
• Aggregated — the return value of GROUP BY or aggregate

functions
• Exists — arguments for EXISTS.
• OverWindow — arguments for OVER

The second parameter indicates the Haskell record type of the SQL
query result.

2.2.3 Filtering Expressions
Line “wheres $ e ! E.id’ .<. value n” of the example in
Section 2.2 implements the filter to select employees whose identi-
fier is less than n. The expressions have the following types:

wheres :: Projection Flat (Maybe Bool)
-> QuerySimple ()

(.<.) :: Projection c a -> Projection c a
-> Projection c (Maybe Bool)

e :: Projection Flat Employee
(! E.id’) :: Projection Flat Employee

-> Projection Flat Int
value :: a -> Projection Flat a

wheres implements the WHERE clause. It stores a query condition
in the query monad, which is QuerySimple in this example. id’ is
an auto-generated accessor to id of the Employee Haskell record,
in the projection level. (!) is a function that applies an accessor to
a Haskell record. value creates an SQL constant expression from
a Haskell constant value. (.<.) is the less-than operator in the
projection level. (.<.) returns Maybe Bool, which wheres takes
because SQL boolean is nullable. The signatures of HRR functions
used in this paper are shown in Figure 3 and Figure 6.

2.3 Inner Join
In HRR, inner joins are expressed using a pair of query actions.
To give an example of an inner join, we now introduce a table for
departments:

CREATE TABLE Department (
dept_id INTEGER NOT NULL

, dept_name VARCHAR(32) NOT NULL);

The following HRR code selects pairs of employee names and their
department names:

innerJoin :: Relation () (String, String)
innerJoin = relation $ do

e <- query E.employee
d <- query D.department
on $ e ! E.deptId’ .=. d ! D.deptId’
return $ e ! E.name’ >< d ! D.deptName’

Haskell Relational Record 3 2016/8/2

on implements the ON clause. (><) is an operator that produces a
pair while (.=.) is the equal operator in the projection level. This
HRR code is converted into the following SQL statement:

SELECT ALL T0.name AS f0, T1.dept_name AS f1
FROM employee T0 INNER JOIN department T1

ON (T0.dept_id = T1.dept_id)

Running this code results in:

GHCi> runRelation conn innerJoin ()
[("Smith","Personnel"),("Parker","Admin")]

2.4 Outer Join
To handle outer joins, HRR provides the queryMaybe operator,
which uses a Maybe result type to express nullability:

queryMaybe :: MonadQuery m => Relation () r
-> m (Projection Flat (Maybe r))

The combinations of query and queryMaybe express the follow-
ing four joins:

• query then query — inner joins
• query then queryMaybe — left outer joins
• queryMaybe then query — right outer joins
• queryMaybe then queryMaybe — full outer joins

Here is an example of a left outer join that selects departments and
early employees in the department, if they exist:

outerJoin :: Relation () (String,Maybe String)
outerJoin = relation $ do

d <- query department
e <- queryMaybe employee
on $ e ?! E.deptId’ .=. just (d ! D.deptId’)
on $ e ?! E.id’ .<. just (value 10)
return $ d ! D.deptName’ >< e ?! E.name’

(?!) is the Maybe version of (!), and just is a function that
injects a value into Maybe, in the projection level. The signatures
of these functions are shown in Figure 6. This HRR relation is
converted into the following SQL statement:

SELECT ALL T0.dept_name AS f0, T1.name AS f1
FROM department T0 LEFT JOIN employee T1

ON (T1.dept_id = T0.dept_id) AND (T1.id < 10)

Running the outerJoin relation results in:

GHCi> runRelation conn outerJoin ()
[("Personnel",Just "Smith")
,("Admin",Nothing)]

2.5 An Aggregate Query
A SELECT statement with a GROUP BY clause may only select
grouping elements and expressions using an aggregate function.
Violating this restriction is a common mistake in hand-written
SQL. Consider the following (incorrect) example:

SELECT name, dept_id, COUNT(id) -- incorrect
FROM employee

GROUP BY dept_id

Here, name is neither a grouping element nor an expression using
an aggregate function. Some database systems return ill-chosen
values for this kind of incorrect SELECT statement, and the mistake
may go unnoticed. This section explains how such errors can be
prevented using query monads.

As explained in Section 2.2.1, QueryAggregate is used for
aggregate queries. It can be converted into a relation using the
following function:

aggregateRelation ::
QueryAggregate (Projection Aggregated r)

-> Relation () r

If the query monad is QueryAggregate, the first parameter of
Projectionmust be Aggregated. Type consistency is guaranteed
because aggregateRelation requires this combination. Note that
relation, described in Section 2.2.1, requires the combination of
QuerySimple and Flat.

The following is an example of an aggregate query that returns
the number of employees for each department:

countMembers :: Relation () (String, Int)
countMembers = aggregateRelation $ do

e <- query E.employee
d <- query D.department
on $ e ! E.deptId’ .=. d ! D.deptId’
gDeptName <- groupBy $ d ! D.deptName’
return $ gDeptName >< count (e ! E.id’)

count implements the COUNT aggregate function of SQL. groupBy
implements the GROUP BY clause. It takes a grouping element and
returns an aggregate-typed key that can be used in the result.

groupBy :: Projection Flat r
-> QueryAggregate (Projection Aggregated r)

countMembers is converted to the following SQL statement, which
uses GROUP BY:

SELECT ALL T1.dept_name AS f0, COUNT(T0.id) AS f1
FROM employee T0 INNER JOIN department T1

ON (T0.dept_id = T1.dept_id)
GROUP BY T1.dept_name

3. Relation Composability
This section discusses relation composability. As described in Sec-
tion 2.2.1 and Section 2.5, the QuerySimple and QueryAggregate
query monads can be converted to relations. Relations are compos-
able regardless of the inner query monads used.

As described later, relations using the arrow interface are al-
ways type-safe but those using the monad interface are not. If cor-
related subqueries are joined in the monad interface, invalid SQL
statements are generated. Even though the monad interface does
not provide perfect type-safety, HRR users tend to use it because
of its simplicity. Fortunately, incorrect correlated subqueries can be
always detected as reference errors when executing the correspond-
ing relations.

3.1 Combining
To show combining relations with set operations, consider the fol-
lowing new table for past members:

CREATE TABLE PastMembers (
year INTEGER NOT NULL

, dept_name VARCHAR(32) NOT NULL
, headcount INTEGER NOT NULL
);

The PastMembers table contains the number of employees per
department, in or before 2015. The following code extracts this
information:

import qualified PastMembers as P

pastMembers’ :: Relation () (Int,(String,Int))
pastMembers’ = relation $ do

p <- query P.pastMembers
return $ p ! P.year’ ><

(p ! P.deptName’ >< p ! P.headcount’)

Haskell Relational Record 4 2016/8/2

The following code counts the current number of employees per
department:

countMembers2016 :: Relation () (Int,(String,Int))
countMembers2016 = aggregateRelation $ do

e <- query E.employee
d <- query D.department
on $ e ! E.deptId’ .=. d ! D.deptId’
gDeptName <- groupBy $ d ! D.deptName’
return $ value 2016 ><

(gDeptName >< count (e ! E.id’))

The inner query monads of pastMembers’ and countMembers2016
are QuerySimple and QueryAggregate, respectively. They can
be composed with unionAll:

memberHistory :: Relation () (Int,(String,Int))
memberHistory =

countMembers2016 ‘unionAll‘ pastMembers’

This code is converted to the following SQL statement:

SELECT ALL 2016 AS f0, T1.dept_name AS f1,
COUNT(T0.id) AS f2

FROM employee T0 INNER JOIN department T1
ON (T0.dept_id = T1.dept_id)

GROUP BY T1.dept_name
UNION ALL
SELECT ALL T2.year AS f0, T2.dept_name AS f1,

T2.headcount AS f2
FROM pastmembers T2

3.2 Joining
To show nested relations, we reuse countMembers, defined in
Section 2.5. Here is an example of nesting relations where the
query monad of countMembers2016’ is QuerySimple while that
of countMembers is QueryAggregate:

countMembers2016’ :: Relation () (Int,(String,Int))
countMembers2016’ = relation $ do

m <- query countMembers
return $ value 2016 >< m

This code is converted into the following SQL:

SELECT ALL 2016 AS f0, T2.f0 AS f1, T2.f1 AS f2
FROM (SELECT ALL T1.dept_name AS f0,

COUNT(T0.id) AS f1
FROM employee T0

INNER JOIN department T1
ON (T0.dept_id = T1.dept_id)

GROUP BY T1.dept_name) T2

Other systems, such as QUEΛ (Suzuki et al. 2016), convert a nested
query to a flat query. As seen in this example, however, HRR
translates relations to SQL queries in a straightforward manner—a
nested query is left as a nested query. Refer to Section 4 for details.

3.3 Correlation
SQL provides correlated subqueries, which use values from outer
queries. The specification allows correlated subqueries to be spec-
ified in the WHERE clause, the HAVING clause, etc., but not in the
FROM clause. In other words, correlated subqueries must not be
joined. In HRR, a correlated subquery can be expressed with a
function whose arguments are projections and return value is a re-
lation. The following is an example of a correlated subquery that
returns identifiers for early employees in a given department:

depEarlyEmp :: Int -> Projection Flat D.Department
-> Relation () Int

depEarlyEmp n d = relation $ do
e <- query E.employee

wheres $ e ! E.id’ .<. value n
wheres $ e ! E.deptId’ .=. d ! D.deptId’
return $ e ! E.id’

Here is an example relation using this correlated subquery in the
WHERE clause:

correlative :: Relation () String
correlative = relation $ do

d <- query department
exist <- queryList $ depEarlyEmp 10 d
wheres $ exists exist
return $ d ! D.deptName’

This relation selects names of departments that have at least one
early employee. queryList converts a relation to a subquery
whose return value type is a set of projections. exists implements
the EXISTS clause. They have the following signatures:

queryList :: Relation () r
-> QuerySimple (ListProjection

(Projection Exists) r)
exists :: ListProjection (Projection Exists) r

-> p (Maybe Bool)

correlative is converted into the following (valid) SQL state-
ment:

SELECT T0.dept_name AS f0
FROM department T0

WHERE (EXISTS (SELECT T1.id AS f0 FROM employee T1
WHERE (T1.id < 10)

AND (T1.dept_id = T0.dept_id)))

Since the correlated subquery is used in the WHERE clause, it can
refer to the table labeled with T0 in the FROM clause.

3.4 Invalid Correlation
Unfortunately, HRR does not provide perfect type-safety for cor-
related subqueries if the monad interface is used. Consider the fol-
lowing correlated subquery, which returns a department name for a
given employee:

empDep :: Projection Flat Employee
-> Relation () Department

empDep e = relation $ do
d <- query department
wheres $ e ! E.deptId’ .=. d ! D.deptId’
return d

The following code uses this correlated subquery for joining:

wrongJoin :: Relation () (String,String)
wrongJoin = relation $ do

e <- query employee
d <- query $ empDep e
return $ e ! E.name’ >< d ! D.deptName’

wrongJoin is converted into the following (invalid) SQL state-
ment:

SELECT ALL T0.name AS f0, T2.f1 AS f1
FROM employee T0

INNER JOIN (SELECT ALL T1.dept_id AS f0,
T1.dept_name AS f1

FROM department T1
WHERE (T0.dept_id = T1.dept_id)) T2

ON (0=0)

The inner SELECT refers to the invisible outer table T0. Running
this code results in the following reference error:

Haskell Relational Record 5 2016/8/2

GHCi> runRelation conn wrongJoin ()
*** Exception:

SqlError
{ seState = ""
, seNativeError = 1
, seErrorMsg = "... : no such column: T0.dept_id"
}

This error happens because monadic scope is different from that
of SELECT statements. A monad implementation therefore does not
provide type-safety for correlated subqueries.

3.5 Arrow Interface
Opaleye developers suggested that this restriction can be imple-
mented using arrows. Here is an arrow version of empDep:

empDepA :: Projection Flat Employee
-> Relation () Department

empDepA e = relation $ proc () -> do
d <- query department -< ()
wheres -< e ! E.deptId’ .=. d ! D.deptId’
returnA -< d

The following is an arrow version of wrongJoin:

wrongJoinA :: Relation () (String,String)
wrongJoinA = relation $ proc () -> do

e <- query employee -< ()
d <- query $ empDepA e -< ()
return -< e ! E.name’ >< d ! D.deptName’

Only unit is allowed as input to query arrows. Since the argument e
of empDepA is out of scope in arrow notation, the Haskell compiler
can detect it: “Not in scope: ‘e’”.

4. Converting Relations to SQL Queries
This section describes the internal structures of HRR and how
relations are translated into SELECT statements.

4.1 Monad Transformers for Query Monads
HRR’s query monads are implemented with monad transformers
(Liang et al. 1995). In addition to a base state monad that is used
for labeling, HRR uses the following monad transformers:

• state transformer for FROM, to build the join tree
• writer transformer for WHERE, to accumulate restrictions
• writer transformer for GROUP BY, to accumulate grouping terms
• writer transformer for HAVING, to accumulate restrictions
• writer transformer for ORDER BY, to accumulate ordering keys

QuerySimple utilizes the base, FROM, WHERE, and ORDER BY trans-
formers, while QueryAggregate utilizes the base and all of the
above transformers. As described previously, query, queryMaybe,
etc. can be used in both non-aggregate and aggregate query monads
thanks to the overloading technique described in (Jones 1995).

4.2 Translation Algorithm
Relation is defined using SubQuery and two phantom type pa-
rameters:

newtype Relation p r = Relation SubQuery

Simplified, SubQuery is defined as follows:

data SubQuery = Table <auto generated table>
| Union SubQuery SubQuery
| Simpl <result columns>

<join subqueries tree>

[<where condition>]
[<order by>]

| Aggre <result columns>
<join subqueries tree>
[<where condition>]
[<group by>]
[<having condition>]
[<order by>]

Table holds an auto-generated primitive relation, and Union stores
two relations concatenated with unionAll. Simpl and Aggre keep
information stored in QuerySimple and QueryAggregate, re-
spectively. This is why relation and aggregateRelation can
convert QuerySimple and QueryAggregate to Relation, re-
spectively.

When a Relation value is used in an aggregate or non-
aggregate query monad, the inner structure of the Relation value
is not necessary; only the parameters are required. This Relation
value is stored in <join subqueries tree> when the outer
query is converted to another Relation value.

The following toSQL function summarizes the algorithm used
to convert a SubQuery value to a SELECT statement:

toSQL :: SubQuery -> String
toSQL (Table tbl) = tableToSQL tbl
toSQL (Union l r) =

paren (toSQL l)
++ "UNION ALL"
++ paren (toSQL r)

toSQL (Flat rc jst wc ob) =
"SELECT"

++ intercalateComma rc
++ expandJoinProduct jst -- calls toSQL
++ expandWhere wc -- calls toSQL
++ expandOrderBy ob

toSQL (Aggregated rc jst wc gb hc ob) =
"SELECT"

++ intercalateComma rc
++ expandJoinProduct jst -- calls toSQL
++ expandWhere wc -- calls toSQL
++ expandGroupBy gb
++ expandHaving hc -- calls toSQL
++ expandOrderBy ob

SubQuery data structures represent SELECT statements in a straight-
forward manner, so toSQL can simply concatenate stored informa-
tion. Functions that we have not described, such as expandWhere,
also concatenate stored information with proper spacing. Note that
expandJoinProduct traverses <join subqueries tree> and
calls toSQL for each subquery.

4.3 Avoiding Column Name Conflicts
Since column names are unique within a table but are not globally
unique, they are prone to conflict. Self join is a basic example.
Consider the following Person table:

CREATE TABLE Person (
id INTEGER NOT NULL

, name VARCHAR(32) NOT NULL
, mother_id INTEGER NOT NULL
);

A naive SQL statement to obtain a list of mother-child pairs would
be:

SELECT name, name -- incorrect
FROM person INNER JOIN person

ON (mother_id = id)

One cannot tell which table each name belongs to. Tables should
therefore be properly labeled, and column names should be used

Haskell Relational Record 6 2016/8/2

with proper qualifications. HRR avoids column name conflicts by
giving global unique names to tables and giving table-unique names
to columns. The concrete algorithm is as follows:

Base case: Assume that table names of existing tables in
a database system are globally unique, and assume that all
column names are table-unique.

Recursive case: Give global-unique names to tables spec-
ified in FROM clauses, and give table-unique names to the
result elements.

This algorithm ensures table name uniqueness even if the SELECT
statements are nested. Column names used in SELECT statements
are specified with qualified names such as T.C. Even if C is not
unique, T.C is global unique since T is global unique.

Code to obtain a list of mother-child pairs is as follows:

selfJoin :: Relation () (String, String)
selfJoin = relation $ do

p1 <- query person
p2 <- query person
on $ p1 ! P.motherId’ .=. p2 ! P.id’
return $ p1 ! P.name’ >< p2 ! P.name’

This is converted into the following SQL statement, with no column
conflict:

SELECT ALL T0.name AS f0, T1.name AS f1
FROM person T0 INNER JOIN person T1

ON (T0.mother_id = T1.id)

5. SQL Expressions with Haskell Records
Type errors are another common mistake in hand-written SQL
statements. The following is an incorrect SQL example that com-
pares an integer and a string:

SELECT name
FROM employee

WHERE id = ’Smith’ -- incorrect

Type errors can be prevented by typing SQL expressions, of course.
The correct HRR code is as follows:

pair :: Relation () String
pair = relation $ do

e <- query E.employee
wheres $ e ! E.name’ .=. value "Smith"
return $ e ! E.name’

As described in Section 2.2, types of SQL expressions are repre-
sented as Projection, and the Haskell type system checks type
consistency. This HRR code is converted into the following SELECT
statement:

SELECT ALL T0.name AS f1
FROM employee T0

WHERE (T0.name = ’Smith’)

We designed HRR to allow any Haskell record types to the
result type of queries. Since queries are used in other queries as
SQL expressions, SQL expressions should be typed with Haskell
record types in HRR.

In Haskell, field accessors of records are functions. To com-
pose records, the applicative style (McBride and Paterson 2008)
is wildly accepted. Since field accessors are instances of Reader
monad, the applicative style can be used even with field accessors.
The following is an example to swap members of a pair using field
accessors in the applicative style:

swap :: (a,b) -> (b,a)
swap = (,) <$> snd <*> fst

HRR provides such operators of record manipulation. This
section describes how to implement primitive operators to com-
pose and decompose Haskell records which correspond to flat
SQL structures. In HRR, projections, (!) with accessors, and
the applicative-like style described below correspond to Haskell
records, field accessors, and the applicative style, respectively.

5.1 Composing Projections
HRR provides the applicative-like style that is similar to the ap-
plicative style. Consider the following data types:

data Member = Member {
memName :: String

, memDept :: String
}

data Ids = Ids {
idEmp :: Int

, idDept :: Int
}

data MemberInfo = MemberInfo {
miMem :: Member

, miIds :: Ids
}

Here is an example of HRR relations composing projections in the
applicative-like style:

memberInfo :: Relation () MemberInfo
memberInfo = relation $ do

e <- query employee
d <- query department
on $ e ! E.deptId’ .=. d ! D.deptId’
let mem = Member |$| e ! E.name’ |*| d ! D.deptName’

ids = Ids |$| e ! E.id’ |*| d ! D.deptId’
return $ MemberInfo |$| mem |*| ids

(|$|) and (|*|) correspond with (<$>) and (<*>), respectively.
See Figure 3 for their signatures. We cannot simply use the Haskell
Applicative typeclass because function types to be mapped are
limited to Haskell record data constructors only. The above code is
converted to the following SQL statement:

SELECT ALL T0.name AS f0, T1.dept_name AS f1,
T0.id AS f2, T1.dept_id AS f3

FROM employee T0 INNER JOIN department T1
ON (T0.dept_id = T1.dept_id)

5.2 Composing Accessors
In addition to projections, accessors are also used in the applicative-
like style. Combining accessors and the applicative-like style, we
can define type conversion functions which are not unthinkable
in the SQL world. The following code automatically generates
accessors for Member, Ids, and MemberInfo:

$(makeRecordPersistableDefault ’’Member)
$(makeRecordPersistableDefault ’’Ids)
$(makeRecordPersistableDefault ’’MemberInfo)

Here is an example of an accessor converting MemberInfo back to
Employee:

toEmployee :: Pi MemberInfo E.Employee
toEmployee = E.Employee |$| miIds’ <.> idEmp’

|*| miMem’ <.> memName’
|*| miIds’ <.> idDept’

Pi is a type for accessors. “Pi a b” indicates that type b is ex-
tracted from type a. (<.>) is a composition operator for accessors.

Haskell Relational Record 7 2016/8/2

Int, String,Day ∈ LType (leaf types)

X ∈ HRec (record types)

A,B,C ∈ HType ::= Int|String|Day|X|(A,B)|
A→ B

(type of record data constructor)

τ ∈ Type ::= PA| A.B

xs, ys ∈ EList (Haskell list of SQL expressions)

ns,ms ∈ IList (Haskell list of integer indices)

T ∈ RCons (record data constructor)

x ∈ Term ::= pxs|pxs ⊕ pys|
T 〈$〉 pxs|pxs 〈∗〉 pys|
πns|πns ⊕ πms|
T 〈$〉 πns|πns 〈∗〉 πms|
pxs idx πns

Γ ∈ TEnv ::= •|Γ, x : τ |Γ, T : A→ B

Γ ` x : τ means the term x is typed as τ

under the type environment Γ.

Figure 1. Definitions of notations for typing rules

5.3 Primitive Operators
As describe earlier, Projection is a type for projections while Pi
is that for accessors. Primitive operators to compose and decom-
pose records in HRR are:

• (<.>) — composing
• (!) — indexing
• (|$|) — mapping
• (|*|) — applying

In the next three subsections, we give their implementations which
preserve correspondence between Haskell record types and flat
SQL structures over the record operations.

5.4 Definition of Projections
Precisely speaking, projections in HRR are correspondences be-
tween SQL expressions and Haskell data types. Internally, these
Haskell data types are represented as a list of SQL expressions.
With notations defined in Figure 1, projections can be defined as
follows:

p[〈exp1〉,〈exp2〉,...,〈expw〉] : P A

Here, A denotes a Haskell record type, and P A indicates the pro-
jection type. p is a constructor that takes a list of SQL expressions
and builds a value whose type is P A.A is associated with the SQL
list [〈exp1〉, 〈exp2〉, ..., 〈expw〉], where indices are based on depth-
first ordering and w is the width of A.

The following projection is for the result type of the SQL state-
ment for memberHistory in Section 3.1:

p[2016, T1.dept name,COUNT (T0.id)]

: P(Int, (String, Int))

Virtual expressions are also typed. For example, e in earlyEmp,
defined in Section 2.2, does not appear in the corresponding SQL
statement but has the following projection:

p[T0.f0, T0.f1] : PEmployee

5.5 Definition of π Functions
Hereafter, we call HRR accessors π functions. The following nota-
tion is used to represent the π function, to extract Haskell record B
from A:

πns : A . B

Here, ns is a list whose elements are indices ofA. The following is
the definition of the π functions with notations defined in Figure 1:

Γ ` π[n0,..,nw−1] : A.B
(T-pi)

(0 ≤ ni ≤ v − 1, v is the width of type A)
(0 ≤ i ≤ w − 1, w is the width of type B)

(ith leaf of Haskell record B
corresponds with ni

th leaf of Haskell record A)

Note that indices are of depth-first order. Figure 2 illustrates T-pi:

A . B

ns

n0

ni

nw−1

0

i

w − 1

0

v − 1

Figure 2. The definition of π. ni is the ith element of ns, whose
value is an index of A.

Here are examples of π functions:

π[1,2] : (Int, (String,Day)) . (String,Day)

π[0,2] : (Int, (String,Day)) . (Int,Day)

π[0,2,1] : (Int, (String,Day)) . ((Int,Day), String)

5.6 Implementation
Figure 3 summaries the signature of the primitive operators. With
these signatures, the Haskell type system infers types of phantom
parameters according to the typing rules defined in Figure 4. For
instance, the signature of (<.>) represents T-compose. Figure 3
also contains this correspondence relationship.

T-P-map restricts T (functions to be mapped) to Haskell record
data constructors. Data constructors decide the number of param-
eters, their types and their ordering. Since Haskell records can be
nested, this rule is applied recursively. For a given record, this rule
creates a tree whose leaf elements are non-record (i.e. single col-
umn) types. A record build with T-P-map and T-P-ap has such a
tree. A list of non-record leaf elements extracted in depth-first or-
der is associated with a list of SQL expressions. If associations
for given records are correct, association for the record build from
those records are also correct. In other words, depth-first ordering
is preserved. In addition to T-P-map and T-P-ap, T-map and T-ap
requires the same preservation of depth-first ordering.

Figure 5 explains the algorithm to implement these primitive
operators. All operations are implemented with list-appending and

Haskell Relational Record 8 2016/8/2

-- Composing (T-compose)
(<.>) :: Pi a b -> Pi b c -> Pi a c
-- Indexing (T-index)
(!) :: Projection c a -> Pi a b -> Projection c b
-- Mapping (T-P-map and T-map)
(|$|) :: (ProductConstructor (a -> b), ProjectableFunctor p) => (a -> b) -> p a -> p b
-- Applying (T-P-ap and T-ap)
(|*|) :: ProjectableApplicative p => p (a -> b) -> p a -> p b
-- Pairing
(><) :: ProjectableApplicative p => p a -> p b -> p (a, b)
x >< y = (,) |$| x |*| y

Figure 3. The signature of the primitive operators and pairing. ProductConstructor restricts types to Haskell record data constructors
only. Projection c and Pi a are instances of both ProjectableFunctor and ProjectableApplicative.

Γ ` πns : A.B πms : B .C

Γ, πns : A.B, πms : B .C ` πns � πms : A.C
(T-compose)

Γ ` pxs : P B πms : B .C

Γ, pxs : P B, πms : B .C ` pxs idx πms : P C
(T-index)

Γ ` T : B → C pxs : P B
Γ, T : B → C, pxs : P B ` T 〈$〉 pxs : P C

(T-P-map)

(T is a Haskell record data constructor)

Γ ` T : B → C πns : A.B

Γ, T : B → C, πns : A.B ` T 〈$〉 πns : A.C
(T-map)

(T is a Haskell record data constructor)

Γ ` pxs : P (B → C) pys : P B
Γ, pxs : P (B → C), pys : P B ` pxs 〈∗〉 pys : P C

(T-P-ap)

Γ ` πns : A. (B → C) πms : A.B

Γ, πns : A. (B → C), πms : A.B ` πns 〈∗〉 πms : A.C
(T-ap)

Figure 4. Typing rules for phantom parameters

πns � πms ↪→ π[ns!!m|m←ms] (E-compose)

pxs idx πns ↪→ p[xs!!n|n←ns] (E-index)

T 〈$〉 pxs ↪→ pxs (E-P-map)

T 〈$〉 πns ↪→ πns (E-map)

pxs 〈∗〉 pys ↪→ pxs++ys (E-P-ap)

πns 〈∗〉 πms ↪→ πns++ms (E-ap)

Figure 5. The algorithms of the primitive operators

list-element-picking by indices. These implementations satisfy the
preservation of depth-first ordering. Figure 7 shows execution ex-
amples of the primitive operators.

With a projection a and π functions p1 and p2, the following
rule holds:

(a idx p1) idx p2 = a idx (p1 � p2)

6. Related Work
This section describes other SQL EDSLs in Haskell.

6.1 HaskellDB
HaskellDB is recognized as the first EDSL for SQL in Haskell. In
spite of its excellent features such as composability, we found the
following drawbacks:

• no outer join support
• limited expression ability of result types
• incorrect behaviors of aggregate queries

To describe the last issue, consider the following query, which
uses aggregation:4

countMembers2 = do
e <- table employee
d <- table department
restrict (e ! E.dept_id .==. d ! D.dept_id)
project $ D.dept_id << d ! D.dept_id

members << count (e ! E.id)

members is an integral column. This HaskellDB query is converted
into the intended SQL statement:

SELECT dept_id2 as dept_id,
COUNT(id1) as members

FROM (SELECT dept_id as dept_id2
FROM Department as T1) as T1,

(SELECT id as id1,
dept_id as dept_id1

FROM Employee as T1) as T2
WHERE ((dept_id1) = (dept_id2))
GROUP BY dept_id2

Now consider a second query that uses the first one:

do m <- countMembers2
project $ members << m ! members

This HaskellDB query is converted into the following SQL state-
ment:

SELECT COUNT(id1) as members
FROM (SELECT dept_id as dept_id2

FROM Department as T1) as T1,
(SELECT id as id1,

dept_id as dept_id1
FROM Employee as T1) as T2

WHERE ((dept_id1) = (dept_id2))

This SQL based on an aggregate query is incorrect because the
GROUP BY clause is lost. Note that inlining the first query into the
second one has the same issue.

4 This issue was originally reported in HaskellDB issue 22 on GitHub.

Haskell Relational Record 9 2016/8/2

6.2 Opaleye
Opaleye is another EDSL for SQL in Haskell. It supports result
types based on Haskell records and outer joins, and it provides
composability. To provide pragmatic aggregate queries, each col-
umn must have exactly one level of aggregation or must appear in
the GROUP BY clause (but not both). Opaleye makes use of pro-
functors to satisfy this condition. While HRR uses monads to build
queries, Opaleye uses arrows. As of this writing, PostgreSQL is the
only database system supported.

In join products, Opaleye automatically combines sub-query
WHERE clauses into an outer WHERE clause, which prevents capture
of the projection of the left sub-query in the join-product. HRR
does not do this, as it is not easy to combine WHERE clauses of
join-product sub-queries that involve union-like operations (UNION,
EXCEPT, and INTERSECT), which HRR supports. This is a trade-off
between Opaleye’s type-safety and HRR’s simplicity and expres-
siveness of SQL statements.

7. Conclusion
We implemented Haskell Relational Record, a pragmatic, em-
bedded domain-specific language for writing SQL statements in
Haskell. To support real-world database system operations, it sup-
ports a large part of SQL, including outer joins and correlated sub-
queries, which are not supported by previous works. HRR handles
non-aggregate and aggregate queries correctly, by using separate
query types. Queries are composable since non-aggregate and ag-
gregate queries are converted into a unified query type. SQL expres-
sions in queries are typed with nested Haskell records. We show al-
gorithms for primitive operators of record manipulation which pre-
serve correspondence between nested Haskell records and flat SQL
structures. HRR code is converted into syntactically-correct SQL
statements. The arrow interface provides type-safety—generated
SQL statements do not contain type or reference errors. If corre-
lated subqueries are joined in the monad interface, generated SQL
statements are not valid. In practice, this is not a serious problem
because incorrectly joined subqueries can be always detected as
reference errors.

Acknowledgments
We would like to deeply thank Travis Cardwell for thoroughly
reviewing an early draft of this paper. We would like to express
our gratitude to Michael Snoyman, Andres Löh, Tom Ellis, Fumi-
aki Kinoshita, Hiroyuki Kurokawa, Oleg Kiselyov, and Yukiyoshi
Kameyama for their feedback.

References
B. Bringert and A. Höckersten. Student Paper: HaskellDB Improved. In

Proceedings of Haskell Workshop, 2004.
J. Hughes. Generalising Monads to Arrows. Science of Computer Program-

ming, 37:67–111, 1998.
Information technology - Database languages - SQL. ISO/IEC 9075 stan-

dard, 2011.
M. P. Jones. Functional Programming with Overloading and Higher-

Order Polymorphism, volume 925 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1995.

D. Leijen and E. Meijer. Domain Specific Embedded Compilers. In Pro-
ceedings of the 2nd Conference on Domain-Specific Languages, 1999.

S. Liang, P. Hudak, and M. Jones. Monad Transformers and Modular Inter-
preters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, 1995.

S. Marlow et al. Haskell 2010 Language Report, 2010.
C. McBride and R. Paterson. Applicative Programming with Effects.

Journal of Functional Programming, 18, 2008.

E. Meijer, B. Beckman, and G. M. Bierman. LINQ: Reconciling Object,
Relations and XML in the .NET Framework. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data,
2006.

A. Ohori and K. Ueno. Making Standard ML a Practical Database Program-
ming Language. In Proceedings of ACM ICFP Conference, 2011.

T. Sheard and S. Peyton Jones. Template Metaprogramming for Haskell. In
Proceedings of Haskell Workshop, 2002.

K. Suzuki, O. Kiselyov, and Y. Kameyama. Finally, Safely-Extensible and
Efficient Language-Integrated Query. In Proceedings of the 2016 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
2016.

A. HRR features
In addition to features descibed in this paper, HRR provides the
followings:

• Type-propagated placeholders
• Window functions
• Direct SQL embedding
• Insertion, deletion, update with/without correlated subqueries
• Customization of type mapping

B. Code Generation
The following is an overview of the auto-generated code for
Employee.hs, expanded by Template Haskell:

data Employee = Employee {
id :: !Int

, name :: !String
, deptId :: !Int
} deriving (Show)

employee :: Relation () Employee
employee = ...

id’ :: Pi Employee Int
id’ = ...

name’ :: Pi Employee String
name’ = ...

deptId’ :: Pi Employee Int
deptId’ = ...

C. HRR operators
Figure 6 summarizes the signatures of HRR operators used in this
paper. See also Figure 3.

D. Execution Examples
Figure 7 shows execution examples of the primitive operators.

Haskell Relational Record 10 2016/8/2

-- Equal
(.=.) :: Projection c a -> Projection c a -> Projection c (Maybe Bool)
-- Greater than
(.<.) :: Projection c a -> Projection c a -> Projection c (Maybe Bool)

-- Injecting to Maybe
just :: p a -> p (Maybe a)
-- Indexing for Maybe
(?!) :: Projection c (Maybe a) -> Pi a b -> Projection c (Maybe b)

-- Converting a non-aggregate query to a relation
relation :: QuerySimple (Projection Flat r) -> Relation () r
-- Converting a aggregate query to a relation
aggregateRelation :: QueryAggregate (Projection Aggregated r) -> Relation () r

-- Joining
query :: MonadQuery m => Relation () r -> m (Projection Flat r)
-- Joining with Maybe values
queryMaybe :: MonadQuery m => Relation () r -> m (Projection Flat (Maybe r))

-- Converting a relation to a subquery
queryList :: Relation () r -> QuerySimple (ListProjection (Projection Exists) r)

-- SQL constant
value :: a -> Projection c a
-- SQL ON
on :: MonadQuery m => Projection Flat (Maybe Bool) -> m ()
-- SQL WHERE (specialized for simplicity)
wheres :: Projection Flat (Maybe Bool) -> QuerySimple ()
wheres :: Projection Flat (Maybe Bool) -> QueryAggregate ()
-- SQL GROUP BY
groupBy :: Projection Flat r -> QueryAggregate (Projection Aggregated r)
-- SQL COUNT aggregate function
count :: Integral b => Projection Flat a -> Projection Aggregated b
-- SQL UNION ALL
unionAll :: Relation () a -> Relation () a -> Relation () a
-- SQL EXISTS
exists :: ListProjection (Projection Exists) r -> p (Maybe Bool)

Figure 6. The signatures of HRR functions. QuerySimple and QueryAggregate are instances of MonadQuery.

π[1,2] � π[1]
E-compose
↪−−−−−−−→ π[[1,2]!!1] ↪→ π[2]

p[1,“Smith”,T2.f0] idx π[1,2]
E-index
↪−−−−−→ p[[1,“Smith”,T2.f0]!!y|y←[1,2]] ↪→ p[“Smith”,T2.f0]

(,) 〈$〉 p[T2.f0]

E-P-map
↪−−−−−−→ p[T2.f0]

(,) 〈$〉 π[2]
E-map
↪−−−−→ π[2]

p[T2.f0] 〈∗〉 p[“Smith”]

E-P-ap
↪−−−−→ p[T2.f0]++[“Smith”] ↪→ p[T2.f0,“Smith”]

π[2] 〈∗〉 π[1]
E-ap
↪−−−→ π[2]++[1] ↪→ π[2,1]

Figure 7. Execution examples of the primitive operators

Haskell Relational Record 11 2016/8/2

