
Experience Report: Haskell Relational Record

Kei Hibino Shohei Murayama
Asahi Net, Inc.

k.hibino@asahinet.com
shohei.murayama@asahinet.com

Kazuhiko Yamamoto
IIJ Innovation Institute Inc.

kazu@iij.ad.jp

Abstract
HaskellDB is an embedded, domain-specific language that provides
composability and type-safety for SQL. In spite of such excellent
features, use of HaskellDB in real-world database operations dis-
closes its drawbacks, including column name collisions and un-
clear semantics of aggregate queries. To solve these issues, we im-
plemented Haskell Relational Record (HRR), which has support
for outer joins and type-propagated placeholders as well as pro-
vides semantically-clear and conflict-free composability. HRR sup-
ports structured projections, which corresponds to nested, standard
Haskell records. This paper describes the key ideas of HRR and
reports on our experience developing and using it.

General Terms Languages

Keywords SQL, Relational Database, Type-Safety, Composable
Query, Outer Join, Aggregation, Placeholder, Nested Record.

1. Introduction
Asahi Net, Inc. is a Japanese Internet service provider with about
572,000 residential customers, as of March 2015. Its business
model is to minimize labor expenses by automating operations,
while keeping a small share of the market. For this purpose, Asahi
Net has maintained many hand-written SQL [4] statements in Java,
Perl, and other programming languages.

It is well-known that SQL statements represented in strings are
error-prone and difficult to maintain due to lack of composability.
In 2012, the authors tried to use HaskellDB [1, 5], which provides
excellent features such as type-safety and composability. If queries
expressed in HaskellDB can be compiled, generated SQL state-
ments are always valid. There is no need to run the programs to test
SQL statements by connecting databases. Since HaskellDB queries
can be composed, large queries can be built from well-tested, small
queries.

Unfortunately, we soon faced issues with HaskellDB. For in-
stance, the semantics of aggregate queries are unclear, and column
names in composed queries conflict. We initially tried to resolve the
issues in HaskellDB, but it was difficult to integrate our new ideas,
and we therefore decided to develop our own system from scratch.

The result is called Haskell Relational Record (HRR), a next-
generation implementation of HaskellDB. Like HaskellDB, HRR
features type-safety and composability, but its composability is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell Symposium 2015, September 3–4, 2015, Vancouver BC Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/[to be supplied]

semantically-clear and conflict-free. HRR has been in use at Asahi
Net since March 2013, and more than two years of production use
demonstrates its stability and usability. We have also released HRR
as open-source software1.

This paper describes the design and implementation of HRR
and reports on our experience using it in production. Section 2
illustrates some issues with HaskellDB, and Section 3 shows our
solutions in HRR. Section 4 and Section 5 describe some advanced
features of HRR and our experience in developming and using it,
respectively. Related work is in Section 6 and our conclusion is in
Section 7.

2. HaskellDB Issues
Asahi Net uses 2,027 unique SQL statements, of which 1,375 are
SELECT statements. Note that it is difficult to count SQL state-
ments in untyped programming languages such as Perl, so we only
counted them in Java and Haskell. This paper focuses on SELECT
queries, which we have found are the most challenging. When we
tried to express them in HaskellDB queries, we faced the following
issues:

• Limited expression ability of projections
• No outer join support
• Column name conflicts
• Partial support for placeholders
• Unclear aggregation semantics

2.1 Limited expression ability of projections
HaskellDB originally used TRex [2], which was only available in
Hugs, and later switched to its own extensible records (or hetero-
geneous lists) for portability. For HaskellDB developers, extensible
records are an elegant solution because this single mechanism can
express both types of tables and types of projection queries. For
example, consider a table Employee:

CREATE TABLE Employee (
id INTEGER NOT NULL

, name VARCHAR(32) NOT NULL
, dept_id INTEGER NOT NULL);

The type of this table can be expressed using extensible records as
follows:

(RecCons Id (Expr Int)
(RecCons Name (Expr String)
(RecCons Dept_id (Expr Int) RecNil)))

The type of selections of two columns can be expressed as well:

(RecCons Id (Expr Int)
(RecCons Name (Expr String) RecNil))

1 http://khibino.github.io/haskell-relational-record/

Extensible records can only express flat structure, which is suf-
ficient for representing SQL projections. In some cases, however,
nested structures are preferable, as they can generalize the results
of SQL queries and preserve information on table structure. For
example, suppose that we have another table called Department:

CREATE TABLE Department (
dept_id INTEGER NOT NULL

, dept_name VARCHAR(32) NOT NULL);

We might want to use the following MemberInfo type as a projec-
tion on the two joined tables:

data Member = Member { mem_name :: String
, mem_dept :: String }

data Ids = Ids { id_emp :: Int, id_dept :: Int }
data MemberInfo = MemberInfo Member Ids

2.2 No outer join support
HaskellDB supports inner joins and cross joins. The following is
an example of an inner join between Employee and Department,
whose modules are imported qualified as E and D respectively:

do e <- table employee
d <- table department
restrict (e ! E.dept_id .==. d ! D.dept_id)
project $ E.name << e ! E.name

D.dept_name << d ! D.dept_name

However, HaskellDB does not provide (left, right, or full) outer
joins, which are common in real-world database operations. At
Asahi Net, 5.2% of the SELECT statements are outer joins.

2.3 Column name conflicts
With HaskellDB, programmers are responsible for ensuring that
column names do not conflict. It is not feasible, however, to make
column names unique among all tables of a real-world database.
Moreover, conflicts occur even with a single table when self-joins
are used. For example, consider the following table, which contains
an identifier, a name, and the identifier of the person’s mother:

CREATE TABLE Person (
id INTEGER NOT NULL

, name VARCHAR(32) NOT NULL
, mother_id INTEGER NOT NULL);

The following is a HaskellDB query for obtaining a pair of a person
and his/her mother. Note that the corresponding module is imported
as P:

do p1 <- table person
p2 <- table person
restrict (p1 ! P.mother_id .==. p2 ! P.id)
project $ P.name << p1 ! P.name

P.name << p2 ! P.name

HaskellDB produces the following SQL statement from this query:

SELECT name1 as name,
name1 as name

FROM (SELECT id as id2,
name as name2

FROM Person as T1) as T1,
(SELECT name as name1,

mother_id as mother_id1
FROM Person as T1) as T2

WHERE ((mother_id1) = (id2))

The column name name in the top level SELECT conflicts. This SQL
would return a valid result, but reusing the query would result in
unexpected behavior.

2.4 Partial support for placeholders
Placeholders are used to parameterize SQL statements, and they
are essential for SQL statement reusability. At Asahi Net, 85.7% of
the SELECT statements use placeholders. Unfortunately, HaskellDB
only has partial support for placeholders. Consider the following
HaskellDB query, which takes one parameter, indicated by the
param keyword:

do e <- table employee
restrict $ e ! E.name .==. param (constant "")
project $ E.id << e ! E.id

E.name << e ! E.name

This HaskellDB query is converted to the following SQL statement:

SELECT id, name
FROM Employee as T1

WHERE ((name) = (?))

Unfortunately, HaskellDB does not provide a way to use this query
by specifying the parameter.

2.5 Unclear aggregation semantics
Aggregate queries are also essential for real-world database opera-
tions. At Asahi Net, 17.2% of the SELECT statements use aggrega-
tion. HaskellDB provides aggregate queries, but the semantics are
unclear2. For instance, consider the following query, which uses
aggregation:

countMembers = do
e <- table employee
d <- table department
restrict (e ! E.dept_id .==. d ! D.dept_id)
project $ D.dept_id << d ! D.dept_id

members << count (e ! E.id)

members is an integral column. This HaskellDB query is converted
into the intended SQL statement:

SELECT dept_id2 as dept_id,
COUNT(id1) as members

FROM (SELECT dept_id as dept_id2
FROM Department as T1) as T1,

(SELECT id as id1,
dept_id as dept_id1

FROM Employee as T1) as T2
WHERE ((dept_id1) = (dept_id2))
GROUP BY dept_id2

Now consider a second query that uses the first one:

do m <- countMembers
project $ members << m ! members

This HaskellDB query is converted into the following SQL state-
ment:

SELECT COUNT(id1) as members
FROM (SELECT dept_id as dept_id2

FROM Department as T1) as T1,
(SELECT id as id1,

dept_id as dept_id1
FROM Employee as T1) as T2

WHERE ((dept_id1) = (dept_id2))

This projection from an aggregate table form is semantically incor-
rect because the GROUP BY clause is lost. Note that inlining the first
query into the second one has the same issue.

2 This issue was originally reported in HaskellDB issue 22 on GitHub.

3. Solutions in HRR
HRR is designed using several components, including relations and
queries. Relations are composable, while queries are a final repre-
sentation of SQL SELECT statements. Their types are Relation p
r and Query p r, respectively, where p and r are phantom types
for placeholders and the results of SQL queries, respectively. A re-
lation can be converted into a query using the following function:

relationalQuery :: Relation p r -> Query p r

A query can then be translated into an SQL statement and sent to a
database system using the following function:

runQuery :: (IConnection conn
,ToSql SqlValue p
,FromSql SqlValue a) =>
conn -> Query p a -> p -> IO [a]

Currently, HRR uses HDBC3 as a database abstraction layer.
IConnection is a typeclass, defined in HDBC, that represents
connections to database systems. The third parameter, p, holds any
placeholder values.

A relation is defined for each table in the database via boot-
strapping, as is discussed in Section 4.1. For example, the follow-
ing relation, which selects employees from the Employee table, is
automatically created:

employee :: Relation () Employee

Relations can be built using other relations. For instance, the fol-
lowing is a relation that selects employees from the Employee table
whose identifier is less than 10:

initialEmp :: Relation () Employee
initialEmp = relation $ do

e <- query employee
wheres $ e ! E.id’ .<. value 10
return e

The relation function restricts the type of the inner build monad
to QuerySimple:

relation :: QuerySimple (Projection Flat r)
-> Relation () r

QuerySimple is a state monad that stores information on joining,
correlation naming, filtering, ordering, etc. A Projection repre-
sents a type of SQL expression. It has two phantom types. The first
parameter indicates whether or not expressions use aggregation op-
erations, and Flat indicates that aggregate operations are not used.
The second parameter indicates the type of the SQL query result.

The query function converts a relation to a build monad, where
m is specialized to QuerySimple in the above example:

query :: (MonadQualify ConfigureQuery m, MonadQuery m)
=> Relation () r
-> m (Projection Flat r)

The initialEmp relation is converted to the following SQL:2011[4]
statement.

SELECT ALL T0.id AS f0, T0.name AS f1, T0.dept_id AS f2
FROM employee T0

WHERE (T0.id < 10)

3.1 Structured projections
We decided to use standard records (data types with field labels) [6]
to express the structured projections discussed in Section 2.1. Ab-
straction layers for database systems give and take a flat structure
of projections. In HDBC, the interface is essentially lists of strings,

3 http://hackage.haskell.org/package/HDBC

which should be converted to and from nested records. To capture
this characteristic, we introduced projection paths, which map be-
tween flat data types and structured ones.

For example, let πxs : A . B denote a projection path. “nth
leaf type of record A” indicates the nth element of the flattened
fields sequence of record A in depth-first order. From the record
point of view, this function converts record A to record B. From
the list point of view, it creates a new list from the original list by
enumerating indices of the original one (xs). Note that the length of
xs is equal to the width ofB, which is the number of SQL columns.
Let pxs : P A denote a projection for record A, corresponding to
the list of single SQL expressions xs.

3.1.1 Typing and reduction rules
The essential rules of typing projection paths and projections are as
follows:

A ` π[0..w−1] : A . A
(T-id)

(w is the width of type A)

A,B ` π[x0,..,xw−1] : A . B
(T-sel)

(0 ≤ xn < v, v is the width of type A)
(0 ≤ n < w,w is the width of type B)

(nth leaf type of record B is xnth leaf type of record A)

A,B,C ` πxs : A . B πys : B . C

A,B,C ` πxs � πys : A . C
(T-compose)

B,C ` pxs : P B πys : B . C

B,C ` pxs idx πys : P C (T-index)

A,B,C ` πxs : A . B πys : A . C

A,B,C ` πxs ⊕ πys : A . (B,C)
(T-pair)

B,C ` pxs : P B pys : P C
B,C ` pxs ⊕ pys : P(B,C)

(T-P-pair)

Emphasized words here indicate infix operators. The following are
the essential reduction rules of projection paths and projections:

πxs � πys

π[xs!!y|y←ys]

(R-compose)
pxs idx πys

p[xs!!y|y←ys]

(R-index)

πxs ⊕ πys

πxs++ys
(R-pair)

pxs ⊕ pys
pxs++ys

(R-P-pair)

Here is an example of T-index, where MI indicates MemberInfo:

p[“Bob”,“Op”,“7”,“3”] : PMI π[2,3] :MI . Ids

p[“Bob”,“Op”,“7”,“3”] idx π[2,3] : P Ids

This is reduced according to R-index as follows:

p[“Bob”,“Op”,“7”,“3”] idx π[2,3]

p[“7”,“3”]

3.1.2 Implementing projection paths
Since Haskell data manipulation operations are much richer than
those of SQL, we need to restrict them to the projections of HRR
relations. For this purpose, we use an abstract data type Pi a
b to express πxs :: A . B and provide a set of manipulation
operators. The following implements T-compose, T-pair, T-P-Pair,
and T-index, respectively, where (!) is a specialized version of the
HRR implementation:

(<.>) :: Pi a b -> Pi b c -> Pi a c
(><) :: ProjectableApplicative p =>

p a -> p b -> p (a, b)
(!) :: Projection c a -> Pi a b -> Projection c b

Pi and Projection c are instances of ProjectableApplicative.
The following rule holds:

a ! p1 ! p2 = a ! (p1 <.> p2)

Here is an example of HRR relations using projection paths, where
E.name’, D.deptId’, etc. are auto-generated projection paths:

employeePair :: Relation () ((String,String),(Int,Int))
employeePair = relation $ do

e <- query employee
d <- query department
on $ e ! E.deptId’ .=. d ! D.deptId’
return $ (e ! E.name’ >< d ! D.deptName’) ><

(e ! E.id’ >< d ! D.deptId’)

The following example shows that projection paths are compos-
able, where fst’ and snd’ are standard projection paths for pairs
provided in HRR:

emps :: Relation () (String, Int)
emps = relation $ do

e <- query employeePair
return $ e ! fst’ ! fst’ >< e ! (snd’ <.> fst’)

3.1.3 Applicative-like style
So far, we can only build nested structures using pairs. Addition
of the following rules enables a style that is similar to applicative
style[7] for building arbitrarily nested records:

A,B,C ` T : B → C πxs : A . B

A,B,C ` T 〈$〉 πxs : A . C
(T-map)

B,C ` T : B → C pxs : P B
B,C ` T 〈$〉 pxs : P C (T-P-map)

(T is record data constructor)
(the width of type B = the width of type C = length xs)

A,B,C ` πxs : A . (B → C) πys : A . B

A,B,C ` πxs 〈∗〉 πys : A . C
(T-ap)

B,C ` pxs : P (B → C) pys : P B
B,C ` pxs 〈∗〉 pys : P C (T-P-ap)

(the width of type B = length ys)
(the width of type C = length xs+ length ys)

T 〈$〉 πxs

πxs
(R-map)

T 〈$〉 pxs
pxs

(R-P-map)

πxs 〈∗〉 πys

πxs++ys
(R-ap)

pxs 〈∗〉 pys
pxs++ys

(R-P-ap)

We cannot simply use the Haskell Applicative class because T in
T-map is limited to record data constructors. Here is an example of
HRR relations using applicative-like style to return MemberInfo:

memberInfo :: Relation () MemberInfo
memberInfo = relation $ do

e <- query employee
d <- query department
on $ e ! E.deptId’ .=. d ! D.deptId’
let mem = Member |$| e ! E.name’ |*| d ! D.deptName’

ids = Ids |$| e ! E.id’ |*| d ! D.deptId’
return $ MemberInfo |$| mem |*| ids

3.2 Unique column names
To avoid column name conflicts as described in Section 2.3, unique
column names are generated when HRR relations are converted
into SQL statements. The SQL specification only allows one or two
level references (e.g. C or T.C), so column names do not conflict if
the following conditions are satisfied:

• Column names of a projection specified to SELECT are unique.
• Table names specified to FROM are unique.

For column names, HRR generates unique labels based on the
width of the record type corresponding to a projection. For table
names, HRR’s state monad increments a counter when joining.
Here is the HRR representation of the example in Section 2.3:

noConflicts :: Relation () (String, String)
noConflicts = relation $ do

p1 <- query person
p2 <- query person
on $ p1 ! P.motherId’ .=. p2 ! P.id’
return $ (,) |$| p1 ! P.name’ |*| p2 ! P.name’

This HRR relation is converted to the following SQL statement:

SELECT ALL T0.name AS f0, T1.name AS f1
FROM person T0 INNER JOIN person T1

ON (T0.mother_id = T1.id)

3.3 Supporting outer joins
To handle outer joins, as discussed in Section 2.2, HRR provides
the queryMaybe operator, which has a Maybe result type, in order
to express nullability:

queryMaybe :: (MonadQualify ConfigureQuery m
,MonadQuery m)

=> Relation () r
-> m (Projection Flat (Maybe r))

The combinations of query and queryMaybe express inner joins,
left outer joins, right outer joins, and full outer joins. Here is an
example of a right outer join:

outerJoin = relation $ do
e <- queryMaybe employee
d <- query department
on $ e ?! E.deptId’ .=. just (d ! D.deptId’)
return $ (,) |$| e |*| d

This HRR relation results in:

SELECT ALL T0.id AS f0, T0.name AS f1, T0.dept_id AS f2,
T1.dept_id AS f3, T1.dept_name AS f4

FROM employee T0 RIGHT JOIN department T1
ON (T0.dept_id = T1.dept_id)

3.4 Type-propagated placeholders
Here is an HRR representation of the example in Section 2.4:

paramQuery :: Relation String (Int, String)
paramQuery = relation’ . placeholder $ \ph -> do

e <- query employee
wheres $ e ! E.name’ .=. ph
return $ (,) |$| e ! E.id’ |*| e ! E.name’

placeholder takes a function which takes a projection to express
placeholders. Each element of the projection must be used exactly
once, in the right order. It is the programmer’s responsibility to
abide by this rule. This HRR relation is converted into the following
SQL statement:

SELECT ALL T0.id AS f0, T0.name AS f1
FROM employee T0

WHERE (T0.name = ?)

HRR relations with placeholders can be run using runQuery, as
explained in the beginning of this section.

As described previously, HRR uses a phantom type for place-
holders. Placeholder type information is carried to upper layers,
where it is actually used. To explain this mechanism, consider the
following HRR relation equivalent to paramQuery:

paramQuery2 :: Relation String (Int, String)
paramQuery2 = relation’ $ do

e <- query employee
(ph’, ()) <- placeholder $ \ph ->

wheres $ e ! E.name’ .=. ph
return (ph’, (,) |$| e ! E.id’ |*| e ! E.name’)

placeholder returns a pair containing a dummy value that holds
the type of the placeholders and the result of the function in the
first argument. The monad then returns both the dummy value and
a final result. The relation’ function has the following type:

relation’ ::
QuerySimple (PlaceHolders p, Projection Flat r)

-> Relation p r

The first parameter p of Relation carries the type information of
p in PlaceHolders.

3.5 Clear aggregation semantics
The key to providing clear aggregation semantics as discussed
in Section 2.5 is type separation of non-aggregate and aggre-
gate build monads. In addition to QuerySimple, HRR provides
the QueryAggregate state monad for expressing aggregate build
monads. This monad allows use of operators corresponding to
GROUP BY/HAVING as well as ordering restrictions. Aggregate build
monads can be converted into a relation using the following func-
tion:

aggregateRelation ::
QueryAggregate (Projection Aggregated r)

-> Relation () r

Note that the Aggregated type parameter restricts the results to
aggregates. The following is an HRR representation of the example
in Section 2.5, where countMembers2 is reused in count2:

countMembers2 :: Relation () (Int, Int)
countMembers2 = aggregateRelation $ do

e <- query employee
d <- query department
on $ e ! E.deptId’ .=. d ! D.deptId’
gDeptId <- groupBy $ d ! D.deptId’
return $ (,) |$| gDeptId |*| count (e ! E.id’)

count2 :: Relation () Int
count2 = relation $ do

m <- query countMembers2
return $ m ! fst’

QueryAggregate is used in countMembers2, while QuerySimple
is used in count2. This separation is the key to preserving correct
semantics of table forms. count2 is converted to the following
SQL statement, which uses GROUP BY:

SELECT ALL T2.f0 AS f0
FROM (SELECT ALL T1.dept_id AS f0, COUNT(T0.id) AS f1

FROM employee T0 INNER JOIN department T1
ON (T0.dept_id = T1.dept_id)

GROUP BY T1.dept_id) T2

4. Advanced Features
4.1 Bootstrapping via Template Haskell
HRR relations representing tables can be defined manually, but
hand-written definitions are error-prone and cannot capture table
schema changes, so HRR can auto-generate them using Template
Haskell[9]. When HRR relations are compiled, table schemas are
obtained from a database system, and HRR table relations and
records are automatically defined.

We recommend defining one table per module in order to avoid
column name conflicts. In the future, using OverloadedRecord-

Fields4 will make it possible to include multiple declarations of
tables and records in one module.

For automatic code generation, it is necessary to map Haskell
data types to those in a database system. HRR provides default
mappings for each supported database system, currently DB2, Post-
greSQL, SQLite, MySQL, Microsoft SQL Server, and OracleSQL.
To ease introduction of HRR into products, mappings can be cus-
tomized.

4.2 Window functions
HRR also provides SQL window functions, which are used in our
database operations. The following is an example that obtains a
projection of a department sequential number and an employee
name:

rankOfName :: Relation () (Int, String)
rankOfName = relation $ do

e <- query employee
d <- query department
on $ e ! E.deptId’ .=. d ! D.deptId’
let seqNo = rowNumber ‘over‘ do

partitionBy $ d ! D.deptId’
orderBy (e ! E.name’) Asc

return $ (,) |$| seqNo |*| e ! E.name’

In this example, over has the following signature:

over :: SqlProjectable (Projection c)
=> Projection OverWindow a -> Window c ()
-> Projection c a

In the Window monad, only operators corresponding to PARTITION
BY/ORDER BY can be used. The first parameter of Window is a
phantom type for aggregation information that restricts partition
column references in this monad. This HRR relation results in the
following statement:

SELECT ALL ROW_NUMBER() OVER
(PARTITION BY T1.dept_id

ORDER BY T0.name ASC) AS f0,
T0.name AS f1

FROM employee T0 INNER JOIN department T1
ON (T0.dept_id = T1.dept_id)

4.3 Direct SQL embedding
Programmers may want to use database-system-dependent SQL
code fragments that are not supported by HRR, so HRR provides
a way to embed SQL code fragments directly. The following is an
example of an HRR relation that uses the substr function to select
employees whose name starts with “A”:

substr :: (SqlProjectable p, ProjectableShowSql p)
=> p String -> p Int -> p Int -> p String

substr s begin len = unsafeProjectSql $
"substr(" <>
unsafeShowSql s <> ", " <>
unsafeShowSql begin <> ", " <>
unsafeShowSql len <> ")"

employeeA :: Relation () Employee
employeeA = relation $ do

e <- query employee
wheres $ substr (e ! E.name’) (value 1) (value 1)

.=. value "A"
return e

This HRR relation is converted to the following statement:

SELECT ALL T0.id AS f0,
T0.name AS f1,
T0.dept_id AS f2

FROM employee T0 WHERE (substr(T0.name, 1, 1) = ’A’)

4 https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields

In our experience, this feature helped ease the introduction of HRR
into our products.

5. Experience
5.1 Schema changes
When a database schema changes, the compiler finds code that
must be changed as well, thanks to Haskell’s strong type system. In
our experience, this breaks down psychological barriers that make
schema changes daunting.

5.2 Functional programming to SQL
HRR brings modular programming to SQL. For instance, the func-
tionality of filter and sortBy is implemented by wheres and
orderBy in HRR. Moreover, structured projections, relations, and
build monads are all first class: they can be passed to and returned
from functions, and they can be bound to variables. Even place-
holders can use structured projections. Such features allow the use
of functional programming style with SQL, which is not possible
when using hand-written SQL statements in strings.

The following HRR relation is an example of functional pro-
gramming style. It takes a list of filters on projections and applies
them to the result projection of another HRR relation:

filters :: [Projection Flat MemberInfo ->
Projection Flat (Maybe Bool)]

-> Relation () MemberInfo
filters fs = relation $ do

mi <- query memberInfo
sequence_ [wheres (f mi) | f <- fs]
return mi

5.3 Validity of generated SQL statements
The composability of HRR relations enables HRR users to write
complex relations without hesitation, even though such relations
are converted into complex SQL statements. HRR users sometimes
feel that it is difficult to validate such resulting statements. It would
be very beneficial to prove the validity of HRR conversions, but we
currently do not know how to achieve this.

5.4 Phantom types and GADTs
Recently, GADTs[8] are popular for implementing embedded,
domain-specific languages in Haskell. GADTs are suitable if the
final internal structures in the target domain are known. Since we
implemented HRR incrementally, we were unable to make use of
GADTs. Phantom types gave us more flexibility. We are still un-
sure if we can replace phantom types with GADTs even after HRR
matures.

5.5 Monad comprehension
Monad comprehensions are generalized list comprehensions that
support several notations, including database queries[3]. Since
HRR relations are monads, they can be expressed using monad
comprehensions. For instance, the initialEmp example can be
written as follows:

relation $ [e | e <- query employee
, () <- wheres $ e ! E.id’ .<. value 10]

We prefer do notation, however, because use of monad compre-
hensions is syntactically awkward (note the binding to unit above)
and has mismatched semantics. One example of mismatched se-
mantics is the extended keyword group by which cannot be used
for aggregate relations in HRR because the semantics of the key-
word assume that computations are on Haskell data, while actual
aggregations are done by database systems.

6. Related Work
Opaleye is another next-generation implementation of HaskellDB.
It supports record-based projections and outer joins as well as pro-
vides semantically-clear composability. To provide semantically-
clear aggregate queries, each column must have exactly one level of
aggregation or must appear in the GROUP BY clause (but not both).
Opaleye makes use of profunctors to satisfy this condition. While
HRR uses monads to build queries, Opaleye uses arrows. Thanks
to the profunctor approach, writing queries in Opaleye is like pro-
gramming with the list arrow in Haskell. As of this writing, Post-
greSQL is the only database system supported.

In join products, Opaleye automatically combines sub-query
WHERE clauses into an outer WHERE clause, which prevents capture
of the projection of the left sub-query in the join-product. HRR
does not do this, as it is not easy to combine WHERE clauses of
join-product sub-queries that involve union-like operations (UNION,
EXCEPT, and INTERSECT), which HRR supports. This is a trade-off
between Opaleye’s type-safety and HRR’s simplicity and expre-
siveness of SQL statements. One of our priorities in future work is
to match the type-safety of Opaleye by implementing semantics-
preserving query transformation.

7. Conclusion
This paper describes Haskell Relational Record (HRR), an em-
bedded, domain-specific language that provides composability and
type-safety to SQL statements. HRR overcomes issues of predeces-
sors by providing structured projections, unique column naming,
outer joins, type-propagated placeholders, and clear aggregation se-
mantics. It also supports automatic schema code generation, direct
SQL embedding, and window functions. We have used HRR in our
products for more than two years and have confirmed its stability
and usability.

Acknowledgments
We would like to deeply thank Travis Cardwell for thoroughly
reviewing an early draft of this paper. We would like to express
our gratitude to Michael Snoyman, Andres Löh, and Tom Ellis for
their feedback.

References
[1] B. Bringert and A. Höckersten. Student Paper: HaskellDB Improved.

In Proceedings of Haskell Workshop, 2004.
[2] B. R. Gaster and M. P. Jones. A Polymorphic Type System for Extensi-

ble Records and Variants. Technical Report NOTTCS-TR-96-3, Depart-
ment of Computer Science, University of Nottingham, 1996.

[3] G. Giorgidze, T. Grust, N. Schweinsberg, and J. Weijers. Bringing Back
Monad Comprehensions. In Proceedings of Haskell Symposium, 2011.

[4] Information technology - Database languages - SQL. ISO/IEC 9075
standard, 2011.

[5] D. Leijen and E. Meijer. Domain Specific Embedded Compilers. In
Proceedings of the 2nd Conference on Domain-Specific Languages,
1999.

[6] S. Marlow et al. Haskell 2010 Language Report, 2010.
[7] C. McBride and R. Paterson. Applicative Programming with Effects.

Journal of Functional Programming, 18, 2008.
[8] T. Schrijvers, S. P. Jones, M. Sulzmann, and D. Vytiniotis. Complete

and Decidable Type Inference for GADTs. In Proceedings of ICFP,
2009.

[9] T. Sheard and S. P. Jones. Template metaprogramming for Haskell. In
Proceedings of Haskell Workshop, 2002.

	Introduction
	HaskellDB Issues
	Limited expression ability of projections
	No outer join support
	Column name conflicts
	Partial support for placeholders
	Unclear aggregation semantics

	Solutions in HRR
	Structured projections
	Typing and reduction rules
	Implementing projection paths
	Applicative-like style

	Unique column names
	Supporting outer joins
	Type-propagated placeholders
	Clear aggregation semantics

	Advanced Features
	Bootstrapping via Template Haskell
	Window functions
	Direct SQL embedding

	Experience
	Schema changes
	Functional programming to SQL
	Validity of generated SQL statements
	Phantom types and GADTs
	Monad comprehension

	Related Work
	Conclusion

